PROCESS-BASED ASSESSMENT OF CLIMATE MODEL PROJECTIONS

Rachel James, Richard Washington, and Richard Jones
Process-based assessment of an ensemble of climate projections for West Africa

Rachel James\(^1\), Richard Washington\(^1\), and Richard Jones\(^{2,3}\)

\(^1\)Climate Research Lab, Centre for the Environment, University of Oxford, Oxford, UK,
\(^2\)Met Office Hadley Centre, Exeter, UK,
\(^3\)School of Geography and the Environment, University of Oxford, Oxford, UK

Abstract

Determining the level of confidence in regional climate model projections could be very useful for designing climate change adaptation, particularly for vulnerable regions. The majority of previous research to evaluate models has been based on the mean state, but for confidence in projections the plausibility of the mechanisms for change is just as, if not more, important. In this study we demonstrate a methodology for process-based assessment of projections, whereby circulation changes accompanying future responses are examined and then compared to atmospheric dynamics during historical years in models and reanalyses. We apply this methodology to an ensemble of five global and regional model experiments and focus on West Africa, where these models project a strong drying trend. The analysis reveals that this drying is associated with anomalous subsidence in the upper atmosphere, and large warming of the Saharan heat low region, with potential feedback effects via the African easterly jet and West African monsoon. This mode occurs during dry years in the historical period, and dominates in the future experiments. However, the same mode is not found in dry years in reanalysis data, which casts doubt on the reasons for strong drying in these models. The regional models show a very similar response to their driving global models, and are therefore no more trustworthy in this case. This result underlines the importance of assessing model credibility on a case-by-case basis and
Examine future projections

How do GCMs and RCMs project precipitation will change in future?
Framework applied in James et al. 2015 (JGR-A)

Examine future projections

How do GCMs and RCMs project precipitation will change in future?

Analyse modelled circulation responses in future

Is it possible to infer potential mechanisms for precipitation change?
Examine future projections

How do GCMs and RCMs project precipitation will change in future?

Analyse modelled circulation responses in future

Is it possible to infer potential mechanisms for precipitation change?

Investigate composites of historical wet and dry years

Are the drivers of change similar for future projections and interannual variability?

Framework applied in James et al. 2015 (JGR-A)
Examine future projections

How do GCMs and RCMs project precipitation will change in future?

Analyse modelled circulation responses in future

Is it possible to infer potential mechanisms for precipitation change?

Investigate composites of historical wet and dry years

Are the drivers of change similar for future projections and interannual variability?

Compare modelled composites to reanalysis

Are interannual circulation responses similar in models and reanalysis?
Conclusions: West Africa

- Important difference in magnitude of GCM and RCM projections
- But character of response very consistent

- Both GCMs and RCMs show distinct circulation mode during 20th century dry years, and this dominates in response to global warming
- This mode is not found in reanalysis

- Findings cast doubt on strong drying of West Sahel
- RCM no more trustworthy than GCM in this case

→ Need for assessment of modelled signals before they are used to provide data for decision-making